Sunday, October 19, 2008

Faster Than Light















(image from http://www.astropix.com/. Taken by Jerry Lodriguss)

AUTHORS NOTE:

Presented below is a concept of how it might be possible to travel in space at speeds in excess of the speed of light in vacuum. It is presented now because of my firm conviction that immediate actions are necessary to Save Our Species; steadily increasing overpopulation of the planet Earth by humanity, coupled with a proliferation of weapons of mass destruction, signals that we may soon wipe the planet’s surface clear of civilization, if not of life itself. One mode of salvation would be to establish self-sustaining branches of humanity on other planets. It does not appear that any other habitable planets exist within our solar system. However the Milky Way Galaxy contains hundreds of billions of stars, many if not all of which have planets orbiting them. Some of those planets are most likely habitable. Astronomers generally believe that these stars are separated by distances averaging a few light years. To reach them in practical amounts of time will require faster than light travel.

I must warn the reader that the hypotheses contained herein are completely unproven. They could turn out to be completely wrong. It is my sincere hope this presentation will at least stimulate further work in this area.

A FASTER THAN LIGHT TRAVEL CONCEPT

Robert Haymes
Professor Emeritus of Physics and Astronomy
Rice University
18 October 2008

GOAL:
TO ENABLE TRAVEL TO DISTANCES COMPARABLE WITH THE DIAMETER OF THE GALAXY IN TIMES (AS MEASURED ON EARTH) THAT ARE MUCH SHORTER THAN ONE HUMAN GENERATION. One consequence of such superlight speeds would be that current astronomical ideas of interstellar distances could be tested for their accuracy.

OBJECTIVE:
TO PRESENT A CONCEPT OF HOW TO ACHIEVE FASTER THAN LIGHT SPEEDS. THE SPEED OF LIGHT IS HERE MEANT TO BE THE SPEED OF LIGHT IN VACUUM, OR C = 3 X 105 KM/SEC.

INTRODUCTION:

Central to the argument is the idea that the speed of light is constrained by the interactions of the light with gravitational fields encountered en route. It is believed that normal matter (e.g. the sun) warps the space time continuum with a curvature of one sign, but the presence of an equal mass of antimatter warps the continuum with opposite-sign curvature. The general approach is to increase the speed of light in vacuum for that region of space that includes the entire spaceship and its contents. If c is locally increased, the barriers imposed by the relativistic transformations on distance, mass and time will not be encountered at c.

By “spaceship”, we mean a vehicle that not only provides life support, but rocket engines that move the ship and its contents.

It is known that gravitational fields cause light traveling through them to change its direction of motion; we propose here to change its speed as well.

The required amount of antimatter mass equals the mass of the spaceship and its contents, plus the amount required by antimatter rocket engines. It is important that the positions of the center of mass of both the antimatter and the matter should coincide with each other.

ANTIMATTER SOURCES

Antimatter has two known origins, natural and artificial. It exists naturally in the direction of the central region of the Galaxy. It will likely prove impractical to mine this source for its antimatter. Artificially, it may be made by operating nucleon accelerators. Such accelerators exist on Earth; antimatter produced by them must be transported to the spaceship in evacuated, magnetized, ultraviolet-illuminated containers. It is likely that the artificial masses of antimatter, produced by accelerators carried on board the spaceship, will be found to be more convenient.

ANTIMATTER ROCKET ENGINES

The rocket engines referred to above may be fueled by antimatter annihilation; when antimatter is annihilated, gamma rays are produced. The gamma rays may form the exhaust speed from the rocket reaction chamber. If a port is provided on the spaceship, the port permits these gamma rays to escape. The spaceship recoils in the opposite direction to the exhaust. The exhaust speed is the greatest speed currently available, namely, c. Increasing the value of c suggests a spaceship speed c' greater than c. The speed in flight may be adjusted by controlling the rate of inflowing of normal matter to the antimatter fuel.

CHEMICAL ROCKET ENGINES

Gamma radiation can be harmful to life; therefore it might be desirable to supplement the annihilation engines with chemical engines that burn fuel. These chemical engines would be operated only in the vicinity of living matter, such as found on Earth. When the spaceship moves sufficiently far from the planet, the chemical engines are turned off and operation of the antimatter engines commences.

THEORY:

One way of putting the hypothesis contained herein is to say matter “attracts” light passing by it, thereby slowing its speed to c. While antimatter, on the other hand, “repels” light passing by it, increasing the speed from c.

It may prove helpful to think of the spaceship volume as having the shape of a “hollow bubble,” a bubble whose surface encompasses the spaceship. The surface of the bubble is composed of matter. At the center of the bubble is a core of photo-ionized antimatter. Upon command, the matter shield is retracted exposing the antimatter core to interstellar space.

THE SPEED OF LIGHT

The speed of light accelerated by the antimatter core rises toward a value c’ that is governed by the distribution of remote cosmic masses of matter and antimatter. The speed of light is considerable reduced by passage through the solar neighborhood. It will likely prove necessary to pass outside the solar influence in order to achieve superlight exhaust speed. This may mean commanding the shield removal at solar distances of no less than 100 astronomical units.

FUEL SUPPLY

Antimatter ions may be made through photoionization of the neutral antimatter by suitably placed sources of ultraviolet light that continually illuminate the antimatter. The wavelength of the w light depends on the atomic number of the antimatter. Antimatter requires storage in a hard vacuum whose particle density is at most then density of the interstellar medium. Since that density is not zero, the photoions will need to be continually replenished.